7,354 research outputs found

    Microscopic laser-driven high-energy colliders

    Full text link
    The concept of a laser-guided e+ee^+e^- collider in the high-energy regime is presented and its feasibility discussed. Ultra-intense laser pulses and strong static magnetic fields are employed to unite in one stage the electron and positron acceleration and their head-on-head collision. We show that the resulting coherent collisions in the GeV regime yield an enormous enhancement of the luminosity with regard to conventional incoherent colliders

    Plant A Little Garden In Your Own Back Yard

    Get PDF
    Photograph of Bert Lewis and J. Walter Leipold; Man smoking pipe and using hoe in garden in back yard; Woman leaning over fence with rake and woman in background watering plantshttps://scholarsjunction.msstate.edu/cht-sheet-music/7926/thumbnail.jp

    Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    Get PDF
    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified

    CONODONTS OF THE LOWERMOST TRIASSIC OF SPITI, AND NEW ZONATION BASED ON NEOGONDOLELLA SUCCESSIONS

    Get PDF
    Conodonts from the lowermost Triassic Otoceras woodwardi beds and adjacent strata of Spiti are described and compared with Permian-Triassic (P-T) boundary bed faunas from elsewhere. A new pelagic zonation based on Neogondolella is introduced: the interval characterized by N. carinata-N. taylorae is subdivided into three parts based on successive first appearances of N. meishanensis, N. krystyni Orchard n. sp. and N. discreta Orchard and Krystyn n. sp., the nominal species of three successive zones. The development of these Griesbachian species involves a progressive morphological change in the configuration of the axial part (blade-carina-cusp) of the pectiniform elements. The pelagic conodont zonation is intercalibrated with the parallel zonation based on species of Hindeodus and Isarcicella, and with ammonoid faunas from Spiti, other Himalayan localities, and the Arctic. The meishanensis Zone embraces the parvus Zone and part of the overlying staeschei Zone. Strata containing O. woodwardi in Spiti carry the indices to the staeschei and krystyni zones. The Neogondolella conodont fauna associated with Otoceras differs from that of the latest Permian Changshing Limestone of China, but resembles that from the P-T boundary transition beds at Meishan, where a meishanensis Zone of restricted scope occurs beneath the parvus datum. The faunal change which introduces the characteristic Neogondolella species of the N. carinata-N. taylorae fauna occurs at the base of the P-T boundary transition beds at Meishan, the proposed boundary stratotype. Slightly above this level, the disappearance of most Neogondolella species and the introduction of new Hindeodus species coincides with a change in conodont biofacies rather than an extinction event. In the Spiti sections, the N. carinata-N. taylorae fauna, associated at first with H. parvus (as in Selong, Tibet), persists through the entire Griesbachian. Indices of the three Neogondolella zones are also recognized in the Salt Range and the Canadian Arctic. Four new conodont species are described: Neogondolella discreta, N. kazi, N. krystyni, and N. nassichuki.&nbsp

    Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications

    Get PDF
    In-vacuo cryogenic environments are ideal for applications requiring both low temperatures and extremely low particle densities. This enables reaching long storage and coherence times for example in ion traps, essential requirements for experiments with highly charged ions, quantum computation, and optical clocks. We have developed a novel cryostat continuously refrigerated with a pulse-tube cryocooler and providing the lowest vibration level reported for such a closed-cycle system with 1 W cooling power for a <5 K experiment. A decoupling system suppresses vibrations from the cryocooler by three orders of magnitude down to a level of 10 nm peak amplitudes in the horizontal plane. Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an experimental chamber, mounted on an optical table, to the cryocooler through a vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long pendulum allows installation of the cryocooler in a separate, acoustically isolated machine room. In the laser laboratory, we measured the residual vibrations using an interferometric setup. The positioning of the 4 K elements is reproduced to better than a few micrometer after a full thermal cycle to room temperature. Extreme high vacuum on the 101510^{-15} mbar level is achieved. In collaboration with the Max-Planck-Intitut f\"ur Kernphysik (MPIK), such a setup is now in operation at the Physikalisch-Technische Bundesanstalt (PTB) for a next-generation optical clock experiment using highly charged ions

    The Determination of Sex

    Get PDF
    n/

    Immortality of the Spirit: Chinese Funerary Art from the Han and Tang Dynasties Exhibition Catalogue

    Get PDF
    Exhibition cataloguehttps://digitalcommons.fairfield.edu/immortality_ephemera/1000/thumbnail.jp

    Immortality of the Spirit: Chinese Funerary Art from the Han and Tang Dynasties Didactic Panels

    Get PDF
    Didactic wall panels.https://digitalcommons.fairfield.edu/immortality_ephemera/1006/thumbnail.jp
    corecore